Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation
نویسندگان
چکیده
In the independent-particle model, the nuclear level density is determined from the neutron and proton singleparticle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This singleparticle level density is subdivided into compound-nucleus and gas components. Two methods are considered for this subdivision: In the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar; both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter is predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods is the deformation dependence of the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method.
منابع مشابه
محاسبه و بررسی سیستماتیکی پارامتر چگالی ترازهای هستهای
The knowledge of nuclear reaction rates is important for studying energy production and nucleosynthesis, especially in reactions including nuclei far from stability line, which are not accessible experimentally so far and thus it is necessary to be able to predict reaction cross sections in low excitation energies. Nuclear level density is one of the important key quantities in many nuclear phy...
متن کاملStudy of Geometrical-Dependence of Glow Discharge on Gain Coefficient in a TE-N2 Laser
Based on a set of experiments, using a transversely exited (TE) oscillator-amplifier N2-laser system (OSC-AMP) with the AMP effective length of 31cm, measurements have been carried out for small signal gain, g0, and saturation energy density, Es, for different AMP gap separations. It was found that the gain-value depends on the AMP electrode gap separation, d<su...
متن کاملTemperature and n-p asymmetry dependencies of the level-density parameter in Ni¿Mo fusion reactions
Properties of evaporation residues and the accompanying light particles have been measured in Ni 1Mo fusion reactions at bombarding energies from E/A55 to 9 MeV. The data indicate that these reactions are essentially complete-fusion reactions with only a small amount of nonequilibrium emission at the highest bombarding energy studied. The measured kinetic-energy spectra of evaporated n, p, d, t...
متن کاملTheoretical Study on Glycosyl Group Effect on Antioxidant Ability of Chrysin Bioflavonoid
Antioxidants are compounds which can prevent biological and chemical substances from oxidative damage by reactive oxygen species. Flavonoids are the most important class of polyphenolic compounds that because of their antioxidant characters possess biological activities and pharmacological effects. Chrysin-6-C-fucopyranoside and chrysin-3-malonyl-6-C-fucopyranoside are mono C-glycosyl derivativ...
متن کاملStructural Characteristics and Reactivity Relationship of some Thiophene Derivatives
ABSTRACT The application of many hetero-aromatic compounds in pharmaceutical and dye industries make the theoretical study of their dipole moment (µ) oscillator strength (f) and other photo-physical properties worthwhile. These properties determine the solubility of many compounds; predict the relationship between their structures, properties and performance. The f, µ, α, transition dipole mome...
متن کامل